Substitutions varianten von Nickel(II) amid: ternäre Amidonic colate mit Lithium und Caesium $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ und $Cs_2Ni(NH_2)_4 \cdot NH_3$

A. Tenten und H. Jacobs

Fachbereich Chemie der Universität Dortmund, Postfach 500 500, W–4600 Dortmund (F.R.G.)

(Eingegangen am 3. Mai 1991)

Zusammenfassung

Rotes $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ kristallisiert bei Raumtemperatur aus flüssigem NH_3 in druckfesten Glasapparaturen bei der Umsetzung von LiNO₃ bzw. LiCl oder LiBr mit $Na_2Ni(NH_2)_4$. Analog entstehen orangefarbene Kristalle von $Cs_2Ni(NH_2)_4 \cdot NH_3$ aus $CsNH_2$ und $Ni(NH_2)_2$. Röntgenographische Untersuchungen ergaben:

Li₃Ni₄(NH₂)₁₁·NH₃: *Pna*2₁; Z = 4; a = 16,344(3) Å; b = 12,310(2) Å; c = 8,113(2) Å; $\rho(r\ddot{o}) = 1,942$ g cm⁻³; $Z(F_0^2 \ge 3\sigma(F_0^2)) = 944$; Z(Variable) = 157; $R/R_w = 0,059/0,072$. Cs₂Ni(NH₂)₄·NH₃: $P2_1/c$; Z = 4; a = 9,553(3) Å; b = 8,734(3) Å; c = 14,243(3) Å; $\beta = 129,96(3)^{\circ}$; $\rho(r\ddot{o}) = 2,960$ g cm⁻³; $Z(F_0^2 \ge 3\sigma(F_0^2)) = 1488$; Z(Variable) = 73; $R/R_w = 0,045/0,052$.

Darstellung, thermische Eigenschaften, IR-spektroskopisches Verhalten und Kristallstrukturen der Verbindungen werden mitgeteilt und vergleichend mit $Ni(NH_2)_2$ sowie weiteren Amidoniccolaten(II) diskutiert.

Abstract

The red substance $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ crystallizes from liquid ammonia at room temperature when $LiNO_3$, LiCl or LiBr reacts with $Na_2Ni(NH_2)_4$ in a pressure-resistant glass vessel. A similar reaction between $CsNH_2$ and $Ni(NH_2)_2$ gives orange crystals of $Cs_2Ni(NH_2)_4 \cdot NH_3$. X-ray investigations gave the following data:

Li₃Ni₄(NH₂)₁₁·NH₃: *Pna*2₁; *Z*=4; *a*=16.344(3) Å; *b*=12.310(2) Å; *c*=8.113(2) Å; *p*(X-ray)=1.942 g cm⁻³; $N(F_0^2 \ge 3\sigma(F_0^2)) = 944$; N(variable) = 157; $R/R_w = 0.059/0.072$. Cs₂Ni(NH₂)₄·NH₃: *P*2₁/*c*; *Z*=4; *a*=9.553(3) Å; *b*=8.734(3) Å; *c*=14.243(3) Å; $\beta = 129.96(3)^\circ$; $\rho(X-ray) = 2.960$ g cm⁻³; $N(F_0^2 \ge 3\sigma(F_0^2)) = 1488$; N(variable) = 73; $R/R_w = 0.045/0.052$.

The synthesis, thermal behaviour, IR spectroscopic characteristics and crystal structures of the compounds are reported and comparisons made with $Ni(NH_2)_2$ and other amidonickel(II) compounds.

1. Einleitung

Wir haben in mehreren Arbeiten über Amide von Ni²⁺ berichtet [1–3]. Amidoniccolate(II) mit Kalium und Rubidium kristallisieren als ungewöhnliche Einlagerungsverbindungen des Typs $M_2Ni(NH_2)_4 \cdot yMX \cdot zMNH_2$, wobei X⁻ Halogenid-, Amid- oder Cyanidionen (aus den Edukten) entspricht und in hexagonal prismatischen Protonenkäfigen von NH_2^- -Ionen die Atomanordnung stabilisiert [1]. Mit Röntgenpulver- und IR-Methoden wurde für Caesium ein isotypes Amidoniccolat(II) nachgewiesen [2].

Im Unterschied zu den bisher skizzierten Verbindungen ermittelten wir für Ni(NH₂)₂ isolierte, über H-Brücken verknüpfte Ni₆(NH₂)₁₂-Baueinheiten [3] und für Na₂Ni(NH₂)₄·2NH₃ eine Verbindung, die sich in ihrer Atomanordnung formal von der des Ni(NH₂)₂ durch Substitution von Nickel durch Natrium ableiten lässt [4].

Uns interessierte nun, ob mit Lithium ebenfalls ein Amidoniccolat(II) darstellbar ist. Bisher sind einige ternäre Amide der schwereren Alkalimetalle mit Lithium charakterisiert worden: $LiNa_2(NH_2)_3$ [5], $Li_3Na(NH_2)_4$, $Li_5Na(NH_2)_6$ [6], $KLi_3(NH_2)_4$, $KLi_7(NH_2)_8$ [7], $KLi(NH_2)_2$, $K_2Li(NH_2)_3$ [8], $CsLi(NH_2)_2$ [9], $CsLi_2(NH_2)_3$ [10] und $Li_2Rb(NH_2)_3$, $LiRb_2(NH_2)_3$ [11]. Des weiteren ist ein AlLi(NH₂)₄ bekannt [12].

Da $LiNH_2$ in flüssigem NH_3 wenig löslich ist, ergeben sich bei der Präparation von ternären Amiden mit Lithium häufig Schwierigkeiten, die bei der Darstellung eines Li-amidoniccolates(II) zu überwinden waren.

Ausserdem interessierte uns, ob unter anderen präparativen Bedingungen z.B. mit KNH_2 , $RbNH_2$ bzw. $CsNH_2$ und $Ni(NH_2)_2$ als Edukte noch ternäre Amide anderer Zusammensetzung als oben angegeben zu erhalten sind. Dies gelang uns jedoch nur mit Caesium.

2. Darstellung von Amidoniccolaten(II) mit Lithium bzw. Caesium

LiNO₃, LiCl oder LiBr reagiert mit $Na_2Ni(NH_2)_4$ im Molverhältnis 3:4 in zweischenkligen druckfesten Glasgefässen bei Raumtemperatur in flüssigem NH_3 z.B. nach

3LiNO₃ + 4Na₂Ni(NH₂)₄ + NH₃ \iff Li₃Ni₄(NH₂)₁₁ · NH₃ + 3NaNO₃ + 5NaNH₂

Dabei entstehen rote Einkristalle von $\text{Li}_3\text{Ni}_4(\text{NH}_2)_{11}\cdot\text{NH}_3$ mit Kantenlängen ≤ 1 mm. Die Verbindung lässt sich feinkristallin auch durch Umsetzung von LiCl mit $\text{K}_2\text{Ni}(\text{NH}_2)_4 \cdot x\text{KNH}_2$ [13] im Molverhältnis (8+x):4 unter sonst gleichen Bedingungen erhalten:

$$(8+x)$$
LiCl + 4K₂Ni(NH₂)₄ · xKNH₂ + NH₃

$$\rightarrow$$
 Li₃Ni₄(NH₂)₁₁·NH₃+(8+x)KCl \downarrow +(5+x)LiNH₂ \downarrow

Kristalle des lithiumreicheren Amidoniccolates $Li_4Ni_4(NH_2)_{12} \cdot NH_3$ bilden sich ausgehend von $LiNH_2$ und $Ni(NH_2)_2$ im Molverhältnis 1:1. Welches der beiden Amid–Ammoniakate sich bei den Umsetzungen bildet, hängt stark von den Löslichkeiten der Edukte und wenig von deren Molverhältnis ab.

Alle Versuche, KNH_2 und RbNH_2 mit $\text{Ni}(\text{NH}_2)_2$ im Molverhältnis von 2:1 bis 0,2:1 in fl. NH₃ miteinander reagieren zu lassen, führten zu den bekannten Produkten M₂Ni(NH₂)₄·*x*MNH₂ [13] und nicht zu einem Amidoniccolat ohne

zusätzlich eingelagertes Alkalimetallamid. Im Falle des Caesiums bilden sich hingegen Kristalle von $Cs_2Ni(NH_2)_4 \cdot NH_3$.

Die festen Edukte und Li₃Ni₄(NH₂)₁₁·NH₃ bzw. Li₄Ni₄(NH₂)₁₂·NH₃ liessen sich in einem Handschuhkasten unter Argon [14] handhaben. Cs₂Ni(NH₂)₄·NH₃ hingegen spaltet so leicht NH₃ ab, dass es in einer speziell konstruierten Abfüllapparatur [4] unter einem definierten NH₃-Druck aufgearbeitet werden musste. Als Edukte dienten: NH₃ (99,999%, Fa. Air Liquide, Düsseldorf), Natrium (99,9%), NiSO₄·6H₂O (p.a.) und NH₄SCN (p.a., alle Fa. E. Merck, Darmstadt), Kalium (purified, Fa. Baker Chemical Co., Phillipsburg, NY, U.S.A.) zur Darstellung von Na₂Ni(NH₂)₄ [4] und K₂Ni(NH₂)₄·*x*KNH₂ [13] sowie Lithium (99,9%, Fa. Ventron, Karlsruhe), Caesium (99,98%, Fa. E. Merck), LiNO₃ (99,999%), LiCl (99,99%), LiBr (99,995%, Fa. Aldrich, Steinheim) zur Darstellung der Li- und Cs-Verbindungen.

Wegen der geringen Löslichkeit von LiNH₂ in flüssigem NH₃ bei Raumtemperatur könnte man versucht sein, grössere Produktmengen bzw. vollständige Umsetzungen zu ternären Lithiumamidoniccolaten bei hohen Temperaturen in Autoklaven zu erreichen. Oberhalb *ca.* 100 °C zersetzen sich aber die ternären Nickelamide selbst unter hohem NH₃-Druck. Daher ist es zweckmässig, alle Reaktionen bei Raumtemperatur durchzuführen. Die festen Edukte (Nickel- und Lithium- bzw. Caesiumkomponenten) werden getrennt in zwei Schenkel einer Glasapparatur eingefüllt und NH₃ einkondensiert.

 $Na_2Ni(NH_2)_4$ löst sich gut mit tiefroter Farbe, $K_2Ni(NH_2)_4 \cdot xKNH_2$ weniger gut mit orange-roter Farbe in NH₃. Nach Eingiessen der farblosen Lösung von LiNO₃ (Löslichkeit 244 g pro 100 g fl. NH₃, 25 °C) [15], LiCl (L. 2,8 g pro 100 g fl. NH₃, 20 °C) bzw. LiBr (L. 1,3 g pro 100 g fl. NH₃, -35 °C) [16] in eine rote Na₂Ni(NH₂)₄-Lösung scheiden sich innerhalb von Tagen tiefrote, säulenförmige Einkristalle von Li₃Ni₄(NH₂)₁₁·NH₃ ab. Die Lösung bleibt rot. Die Verbindung ist gut in flüssigem NH_3 löslich. Sie kann daher auch nach vollständiger Reaktion nicht von ebenfalls gut löslichen Nebenprodukten extraktiv getrennt werden. Mikrokristallines, phasenreines Li₃Ni₄(NH₂)₁₁·NH₃ entsteht nach dem Eingiessen einer farblosen LiCl-Lösung in die orange-rote Suspension von $K_2Ni(NH_2)_4 \cdot xKNH_2$ und häufigem Durchmischen im Ultraschallbad. Geht man von den binären Verbindungen in Form von LiNH2- und Ni(NH2)2-Suspensionen aus, so färbt sich die überstehende Lösung nach wenigen Tagen und häufigem Durchmischen orange, und kleine, orangefarbene, sehr dünne Plättchen einer Li-reicheren Verbindung von $Li_4Ni_4(NH_2)_{12}$ ·NH₃ kristallisieren aus. Giesst man eine gelbe CsNH₂-Lösung in eine Ni(NH₂)₂-Suspension, so färbt sich die überstehende Lösung innerhalb von Tagen bei häufigem Durchmischen orange. Aus ihr kristallisieren grosse, orangefarbene Plättchen von schwerlöslichem $Cs_2Ni(NH_2)_4 \cdot NH_3$ aus.

Ein Trennen von Produkt und Nebenprodukten (bzw. Edukten) unterschiedlicher Löslichkeit wird durch mehrmaliges Dekantieren der überstehenden Lösung und Zurückdestillieren von NH_3 erreicht. Durch Einfrieren von NH_3 auf der Seite der Nebenprodukte bzw. Edukte wird das Amid–Ammoniakat vom Lösungsmittel befreit und der Steg zwischen beiden Schenkeln abgeschmolzen.

Auswertung	eines Pulverdia	gramms ^a von Li _ć	3Ni4(NH ₂), N	IH ₃					
hkl	$\sin^2 \Theta_{gem}$	$\sin^2 \Theta_{\rm ber}$	$I_{ m gesch}$	$I_{ m ber}$	hkl	$\sin^2 \Theta_{gem}$	$\sin^2 \Theta_{ m ber}$	$I_{ m gesch}$	$I_{ m ber}$
110	0,0063	0,0061	100	100	113	0.0877	0,0876	5 D	9
200	0,0091	0,0089	30	23	422		0,0876		
$\begin{bmatrix} 210\\011 \end{bmatrix}$	0,0130	0,0128 0,0129	06	89	601 203		0,0895 0,0904		
111	0,0151	0,0152	30	36	930 332	1160'0	0,0915	eI	10
$\begin{bmatrix} 120\\ 201 \end{bmatrix}$	0,0183	0,0179 0,0180	60	50	341)		0,0917		
211	0,0222	0,0219	10	7	$\left.\begin{array}{c}611\\213\end{array}\right\}$	0,0943	$0,0934 \\ 0,0943$	ۍ	e
$\begin{array}{c} 310\\ 220\end{array}$	0,0242	0,0240 0,0246	10	11	512]		0,0960		
$\left\{\begin{array}{c}311\\221\end{array}\right\}$	0,0331	0,0331 0,0366	10	Q	$\left.\begin{array}{c} 621\\ 313\\ 223\end{array}\right\}$	0,1057	0,1052 0,1055 0,1060	10	6
320 400 002	0,0358	0,0357 0,0358 0,0362	10	6	250 051		0,1066 0,1067	I	
112	0,0428	0,0423	ß	7	432	0,1072	0,1071 0,1073 0.1076	۵	Ð
230 031 321 202 202	0,0446	0,0441 0,0442 0,0448 0,0448 0,0451	20	17	033 602 323	0,1166	0,1166 0,1166 0,1167 0,1172	8	4

196

TABELLE 1

8	c,	כ			14			4	•		2		¢	3		Ľ	C
15	ŭ	S			20			2	5		2		¢	1		01	01
0,1170 0,1184 0,1188 0,1188	0,1247	0,1255		0,1268	0,1272	0,1274		0,1323	0,1328	0 1361	0 1967	0,1901	0,1462	0,1470		0,1537	0,1538
0,1185	01940	0,1243			0,1268			0 1323	07010		0,1371		01169	0,1402		0 1595	0,1000
540 540 133	631 720	233		351]	532 }	541)		622 }	423)	152]	201	6 000	143]	810 5		204)	731 J
പറ	4	4		29			x)		4	I				10		
5 IO	7	ວ		40			01			6	I				10		
0,0464 0,0487 0,0490	0,0531	0,0540	0,0602	0,0604	0,0608		0,0643	0,0647	0.0714	0,0715	0,0719	0,0720	0,0800	0,0803	0,0805	0,0805	0,0806
0,0466 0,0485	0,0530	0,0545		0,0601			0.0642	1000		0.0715					0,0802		
$\begin{array}{c}131\\411\\212\end{array}\right\}$	231	122	312)	421 }	222	,	331	140	240]	520	322	402	431]	232	241 }	600	521

Im Gegensatz zu den Lithiumverbindungen zersetzt sich die Caesiumverbindung bei Raumtemperatur auch im geschlossenen Substanzrohr unter NH₃-Abspaltung. Daher ist das Isolieren von Einkristallen nach der für Na₂Ni(NH₂)₄·2NH₃ entwickelten Methode [4] zu empfehlen.

Auch durch Variation der Eduktverhältnisse lassen sich röntgenographisch in den Systemen Li–Ni–NH₃ und Cs–Ni–NH₃ keine weiteren ternären Phasen nachweisen.

3. Röntgenographische Untersuchung

Präzessionsaufnahmen an Einkristallen (Mo K α -Strahlung) liefern für Li₃Ni₄(NH₂)₁₁·NH₃ und Cs₂Ni(NH₂)₄·NH₃ Metrik und Bravaistyp. Bei Li₃Ni₄(NH₂)₁₁·NH₃ führen zonale Auslöschungen mit 0kl:k+1=2n und h0l:h=2n zu den Raumgruppentypen *Pnam* (\triangleq *Pnma*) und *Pna2*₁. Die Schichtaufnahmen von Cs₂Ni(NH₂)₄·NH₃ zeigen die zonalen und seriellen Auslöschungen h0l:l=2n und 0k0:k=2n. Hier ergibt sich eindeutig der Raumgruppentyp $P2_1/c$.

Beide Verbindungen zersetzen sich beim Zerreiben im Mörser. Für die Anfertigung von Pulveraufnahmen wurden geeignete Präparate in Röntgenkapillaren durch Aufkondensieren von NH_3 auf zerriebene Proben dargestellt. Nach dem Ablassen von überschüssigem NH_3 wird das Kapillarrohr abgeschmolzen.

Von beiden Substanzen wurden Debye–Scherrer-Aufnahmen nach Straumanis angefertigt. Diejenigen von $\text{Li}_3\text{Ni}_4(\text{NH}_2)_{11}\cdot\text{NH}_3$ liessen sich orthorhombisch primitiv mit den Gitterkonstanten a = 16,303(9) Å; b = 12,334(4)Å und c = 8,105(3) Å indizieren, diejenigen von $\text{Cs}_2\text{Ni}(\text{NH}_2)_4\cdot\text{NH}_3$ monoklin primitiv mit den Gitterkonstanten a = 9,556(3) Å; b = 8,729(5) Å; c = 14,251(8)Å und $\beta = 130,01(4)^\circ$. Die Tabellen 1 und 2 enthalten die Auswertung von Pulverdiagrammen (Cu K α -Strahlung).

Wegen der nur sehr kleinen, in geringen Mengen erhältlichen Kristalle der Li-reicheren Verbindung $\text{Li}_4\text{Ni}_4(\text{NH}_2)_{12}\cdot\text{NH}_3$ sollen neben quantitativen Analysen auch Volumenbetrachtungen anhand von Daten aus Präzessionsaufnahmen zur Charakterisierung dienen: man findet mit a = 8,70 Å; b = 15,36Å; c = 13,30 Å und $\beta \approx 90^{\circ}$ ähnliche Gitterkonstanten wie bei der lithiumärmeren Phase. Die systematischen Auslöschungen h0l: h + l = 2n und 0k0: k = 2nlassen auf den Raumgruppentyp $P2_1/n$ schliessen. Es ergibt sich ein um 146 Å³ grösseres Elementarzellvolumen für die lithiumreichere Phase, das sich wie folgt interpretieren lässt: in Tabelle 3 sind die dafür benötigten Volumeninkremente der Ionen [17] aufgelistet.

Der zusätzliche Einbau von 4LiNH_2 ($4 \times 2,5 \text{ Å}^3 + 4 \times 33,6 \text{ Å}^3 = 144,4 \text{ Å}^3$) erklärt das gefundene Volumen deutlich besser als der Einbau von 4NH_3 ($4 \times 29,8 \text{ Å}^3 = 119,2 \text{ Å}^3$), der zu einem ebenfalls denkbaren "Li₃Ni₄(NH₂)₁₁·2NH₃" führen würde.

Die zu geringe Grösse und zu schlechte Qualität – Neigung zum Verzwilligen längs [100] – lassen keine rechnergestützte Sammlung und Aus-

Auswertu	ıng eines Pulver	diagrammsª von Cs	2Ni(NH2)₄ · NH	3					
hkl	$\sin^2 \Theta_{gem}$	$\sin^2 \Theta_{ m ber}$	I_{gesch}	$I_{ m ber}$	hkl	sin ² $\Theta_{\rm gem}$	$\sin^2 \Theta_{ m ber}$	$I_{ m gesch}$	Iber
100	0,0110	0,0111	80	20	102	0,0502	0.0502	50	51
$10\bar{2}$	0,0119	0,0119	20	26	022	0,0509	0,0511	10	16
011	0,0128	0,0128	30	33	013	0,0527	0,0527	20	18
110	0,0188	0,0189	20	18	$22\bar{2}$	0,0573	0,0573	20	24
002	0,0199	0,0199	10	15	$11\overline{4}$	0,0603	0,0604	15	18
$20\bar{2}$	0,0261	0,0261	15	16	$30\bar{2}$	0,0623	0,0624	30	38
021	0,0361	0,0362	20	17	220	0,0755	0,0756	50	59
$21\bar{3}$	0,0395	0,0397	20	16	032	0,0902	0,0901	10	17
$12\bar{2}$	0,0431	0,0431	100	100	024	0,1111	0,1111	10	14
20 4	0,0477	0,0477	40	29				1	1

^{*}Cu Ka-Strahlung; Straumanis-Methode; Raumgruppe $P2_1/c$; Gitterkonstanten: a = 9,556(3) Å; b = 8,729(5) Å, c = 14,251(8) Å, $\beta = 130,01(4)^{\circ}$.

199

Volumeninkremente in Å³

Li ⁺	2,5 [17]
Na ⁺	10,8 [17]
Ni ²⁺	3,3 [17]
NH ₂ ⁻	33,6 (aus $Ni(NH_2)_2$ [3])
NH3	29,8 (aus $Na_2Ni(NH_2)_4 \cdot 2NH_3$ [4])

TABELLE 4

Messtechnische und kristallographische Daten zur röntgenographischen Strukturbestimmung an $Li_3Ni_4(NH_2)_{11}$ · NH₃ und $Cs_2Ni(NH_2)_4$ · NH₃

	$Li_3Ni_4(NH_2)_{11} \cdot NH_3$	$Cs_2Ni(NH_2)_4 \cdot NH_3$
Strahlung	Μο Κα	Μο Κα
Monochromator	Graphit	Graphit
Kristallgrösse	$0,12 \times 0,12 \times 0,5 \text{ mm}^3$	$0,05 \times 0,35 \times 0,4 \text{ mm}^3$
1/μ	0,22 mm	0,051 mm
Messbereich	2° ≤ <i>Θ</i> ≤ 30°	1°≤ <i>Θ</i> ≤33°
	$0 \leq h \leq 21$	$-14 \leq h \leq 14$
	$0 \leq k \leq 16$	$-13 \le k \le 13$
	$-11 \le l \le 11$	0≤l≤21
Gitterkonstanten	a = 16,344(3) Å	a = 9,553(3) Å
	b = 12,310(2) Å	b = 8,734(3) Å
	c = 8,113(2) Å	c = 14,243(3) Å
		$\beta = 129,96(3)^{\circ}$
Volumen	$V = 1631 \text{ Å}^3$	$V = 910 \text{ Å}^3$
Formeleinheiten	Z = 4	Z = 4
Dichte, röntgen.	$1,942 \text{ g cm}^{-3}$	$2,960 \text{ g cm}^{-3}$
Raumgruppe	$Pna2_1$ (Nr. 33)	$P2_1/c$ (Nr. 14)
$Z(F_0)$ i.d. asymm. Einheit	2512	3634
davon mit $(F_0^2) \ge 3\sigma(F_0)^2$	944 (0,15 $\leq \sin \Theta / \lambda \leq 0,6$)	1488 (0,1 $\leq \sin \Theta/\lambda \leq 0,7$)
Zahl der Variablen	157	73
R-Werte: R/R_w mit $w=1$	0,059/0,072	0,045/0,052
max. Restelektronendichte	≼1,18 e Å ⁻³	≼1,47 e Å ⁻³

wertung von Intensitätsdaten zu. Die bei analoger Aufstellung der Elementarzellen beider Li-Phasen ähnlichen Reflexmuster sind jedoch ein weiteres Indiz dafür, dass wesentliche Strukturmerkmale übereinstimmen sollten.

Intensitätsdaten der beiden Titelverbindungen wurden auf einem Vierkreisdiffraktometer (CAD 4, Enraf-Nonius, Delft, NL) gesammelt. In Tabelle 4 sind messtechnische und kristallographische Parameter angegeben.

Die Auswertung der Messdaten erfolgte im Fall der Li-Verbindung mit dem Programmsystem SHELXTL-Plus [18] auf einer Microvax II (Fa. Digital Equipment, München) und für die Cs-Verbindung mit dem "Structure Determination Package" [19] auf einem PDP 11/34 Rechner der gleichen Firma. Die Lösung der Struktur erfolgte jeweils nach der Schweratommethode über Pattersonsynthesen mit nachfolgenden Differenzenfouriersynthesen: nach isotroper Verfeinerung der Temperaturparameter betrug der *R*-Wert 10,1% für $\text{Li}_3\text{Ni}_4(\text{NH}_2)_{11}\cdot\text{NH}_3$ und 7,9% für $\text{Cs}_2\text{Ni}(\text{NH}_2)_4\cdot\text{NH}_3$. Nach Verfeinerung der Koeffizienten anisotroper Temperaturparameter – mit Ausnahme von Lithium – sanken die R/R_w -Werte auf 0,059/0,072 bzw. 0,045/0,052. Uber anschliessende Differenzenfouriersynthesen liessen sich die Lagen der H-Atome nur teilweise bestimmen. Bei Li_3\text{Ni}_4(\text{NH}_2)_{11}\cdot\text{NH}_3 müssten Lage- und isotrope Temperaturparameter für 25 H-Atome bei gleichzeitig geringer Zahl von Messwerten bestimmt werden. Bei der Cs-Verbindung ist der Streuanteil des Wasserstoffs zu gering, so dass hier ebenfalls nur etwa die Hälfe der H-Atomlagen ermittelt werden konnte. Tabelle 5 enthält die Ergebnisse der Bestimmung von Lage- und isotropen Temperaturparametern – ohne Berücksichtigung der H-Atome für beide Verbindungen – und Tabelle 6 Koeffizienten von anisotrop verfeinerten Temperaturfaktoren.

TABELLE 5

Ergebnis^a der Bestimmung von Lage- und isotropen Temperaturparametern für (a) $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ und (b) $Cs_2Ni(NH_2)_4 \cdot NH_3$

Atom	x	y	z	B (Å ³)
(a) Li_3Ni_4	$(NH_2)_{11} \cdot NH_3$; allg. La	ge 4a in Pna2 ₁		
Ni(1)	0,0945(2)	0,2196(2)	0	2,08(5)
Ni(2)	0,1822(2)	0,0300(3)	0,1020(4)	2,36(5)
Ni(3)	0,1990(2)	0,1924(3)	0,7104(4)	2,43(6)
Ni(4)	0,0957(2)	0,0104(3)	0,7917(4)	2,33(5)
N(1)	0,148(1)	0,338(2)	0,126(3)	3,0(5)
N(2)	0,099(2)	0,122(2)	0,188(2)	3,3(5)
N(3)	0,232(1)	0,445(2)	0,502(2)	2,9(4)
N(4)	0,117(1)	0,293(2)	0,789(3)	3,2(5)
N(5)	0,351(1)	0,388(2)	0,191(3)	3,1(5)
N(6)	0,117(1)	0,107(2)	0,606(3)	3,3(5)
N(7)	0,026(1)	0,120(2)	0,889(3)	2,2(4)
N(8)	0,282(1)	0,097(2)	0,644(2)	2,7(4)
N(9)	0,387(1)	0,436(2)	0,510(3)	3,1(4)
N(10)	0,264(1)	0,123(2)	0,194(2)	2,6(5)
N(11)	0,282(1)	0,272(2)	0,831(2)	3,1(5)
N(12)	0,433(2)	0,094(3)	0,948(6)	6,3(9)
Li(1)	0,259(3)	0,271(4)	0,068(6)	3,2(9)
Li(2)	0,240(3)	0,446(3)	0,245(5)	2,7(8)
Li(3)	0,309(3)	0,103(4)	0,921(6)	3,0(8)
(b) $Cs_2Ni(l)$	$(NH_2)_4 \cdot NH_3$; alle Atom	e in 4e in P2 ₁ /c		
Cs(1)	0,0204(1)	0,9628(1)	0,30516(7)	3,37(2)
Cs(2)	0,7775(1)	0,2504(1)	0,37356(7)	3,37(2)
Ni	0,2786(2)	0,1698(2)	0,6135(1)	2,46(3)
N(1)	0,177(1)	0,276(1)	0,4635(8)	3,0(2)
N(2)	0,391(1)	0,481(1)	0,0811(8)	3,1(2)
N(3)	0,366(1)	0,438(1)	0,2609(9)	3,5(3)
N(4)	0,154(1)	0,309(1)	0,6446(9)	3,6(3)
N(5)	0,331(2)	0,690(2)	0,418(1)	4,9(4)

*Standardabweichungen in Klammern.

TABELLE (6
-----------	---

Atom	<i>U</i> 11	U_{22}	U ₃₃	U ₁₂	U ₁₃	U_{23}
(a) Li_3N	$Vi_4(NH_2)_{11} \cdot NH_2$	$I_3: U_{ij} in 10^2 J$	Å ²			
Ni(1)	3,3(1)	3,1(1)	1,5(1)	0(2)	0,1(1)	~0,4(1)
Ni(2)	4,5(2)	3,3(1)	1,2(1)	-0,2(2)	0,5(1)	0,6(1)
Ni(3)	4,5(2)	3,7(2)	1,0(1)	0,2(2)	0,2(2)	0,5(1)
Ni(4)	3,1(1)	3,9(2)	1,9(1)	-0,4(2)	0,1(2)	0,9(1)
N(1)	5(1)	4(1)	3(1)	0(1)	1(1)	-2(1)
N(2)	7(1)	4(1)	1,0(9)	0(1)	-1(1)	0,6(9)
N(3)	5(1)	5(1)	1,2(8)	1(1)	0(1)	2(1)
N(4)	6(1)	3(1)	4(1)	2(1)	1(1)	2(1)
N(5)	1,9(9)	4(1)	5(1)	1,4(9)	0(1)	-1(1)
N(6)	4(1)	6(1)	2(1)	-1(1)	-1(1)	1(1)
N(7)	1,9(8)	1,7(9)	5(1)	1,3(9)	0(1)	-1,5(8)
N(8)	5(1)	4(1)	1,6(9)	0(1)	-1(1)	0,9(9)
N(9)	5(1)	3(1)	3(1)	0(1)	0(1)	1(1)
N(10)	5(1)	4(1)	0,6(9)	0(1)	0(1)	1(1)
N(11)	7(1)	3(1)	1,8(9)	0(1)	-2(1)	-0,1(9)
N(12)	6(2)	7(2)	10(3)	-1(2)	-1(2)	1(2)
(b) Cs_2N	$i(NH_2)_4 \cdot NH_3$:	U_{ij} in 10^3 \AA^2				
Cs(1)	44,1(2)	42,1(4)	40,1(2)	-1,2(3)	26,4(2)	-7,7(3)
Cs(2)	42,1(2)	31,1(3)	54,9(3)	1,4(3)	31,1(2)	1,5(3)
Ni	30,6(5)	28,6(7)	29,0(5)	-7,6(6)	16,7(3)	-2,0(5)
N(1)	41(3)	41(6)	35(3)	-4(4)	25(2)	5(4)
N(2)	43(3)	43(6)	47(3)	0(4)	35(2)	-2(4)
N(3)	41(4)	41(6)	34(4)	7(4)	17(3)	-1(4)
N(4)	56(4)	36(6)	59(4)	-4(4)	43(2)	-10(4)
N(5)	48(5)	62(8)	60(5)	5(6)	27(3)	-9(6)

Ergebnis^a der Verfeinerung von Koeffizienten anisotroper Temperaturfaktoren für (a) $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ und (b) $Cs_2Ni(NH_2)_4 \cdot NH_3$

*Standardabweichungen in Klammern.

Die Struktur von $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ lässt keine Verfeinerung in der zentrosymmetrischen Raumgruppe *Pnma* zu.

4. Analytische und thermochemische Untersuchungen

Die Zusammensetzungen von $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ und $Cs_2Ni(NH_2)_4 \cdot NH_3$ wurden komplexometrisch (Ni-Gehalt [20]), flammenphotometrisch (Li- und Cs-Gehalt mit dem Spektralphotometer Modell 1248 der Firma Beckmann, München) und durch Verbrennungsanalyse (N- und H-Gehalt mit dem Elemental Analyser 1106 der Firma Carlo Erba, Mailand) bestimmt. Die Stöchiometrie des nur in geringen Mengen erhältlichen $Li_4Ni_4(NH_2)_{12} \cdot NH_3$ wurde analog zu oben nur über den Li-, N- und H-Gehalt ermittelt. Tabelle 7 stellt berechnete und gemessene Werte gegenüber.

Thermochemische Untersuchungen an $Li_3Ni_4(NH_2)_{11} \cdot NH_3$, $K_2Ni(NH_2)_4 \cdot xKNH_2$, $Rb_2Ni(NH_2)_4 \cdot xRbNH_2$ [13] und $Cs_2Ni(NH_2)_4 \cdot NH_3$ dienten haupt-

	$Li_3Ni_4(NH_2)_1$	$_1 \cdot \mathrm{NH}_3$	Li ₄ Ni ₄ (NH ₂) ₁	$_2 \cdot \mathrm{NH}_3$	$Cs_2Ni(NH_2)_4$	·NH ₃
	Gemessen	Berechnet	Gemessen	Berechnet	Gemessen	Berechnet
Li	4,8	4,6	5,6	5,9		
Cs				,	65,9	65,5
Ni	52,0	52,3	-	49,8	14,7	14,5
Ν	37,4	37,4	38,3	38,6	17,0	17,3
н	5,5	5,6	5,5	5,8	2,8	2,7

*Alle Angaben in Gew.%.

TABELLE 8

Ergebnisse der Auswertung von DTA/TG-Messungen an $\rm Ni(\rm NH_2)_2$ und mehreren ternären Amiden und Amid–Ammoniakaten des Nickels

	Zersetzungs- temperatur (°C)	Temperatur der Δm -Bestimmung (°C)	Masseverlust Δm (%)	Erwarteter Masseverlust Δm (%)
	()	()		
$Ni(NH_2)_2$	120	175	27,4	30,1
$Li_3Ni_4(NH_2)_{11} \cdot NH_3$	135	170	27,9	28,1
$Na_2Ni(NH_2)_4$	100	170	16,0	16,2
$K_2Ni(NH_2)_4 \cdot 0,23KNH_2$	125	170	12,2	12,7
$Rb_2Ni(NH_2)_4 \cdot 0,33RbNH_2$	125	170	8,0	8,3
$Cs_2Ni(NH_2)_4 \cdot NH_3$	120	170	10,8	10,9

sächlich der Bestimmung von Temperaturbereichen, in denen Alkalimetallnickelnitride existieren könnten.

Tensimetrische Messungen beim thermischen Abbau von Ni(NH₂)₂ [3] und Na₂Ni(NH₂)₄·2NH₃ [4] wurden durch Differentialthermoanalytische (DTA/ TG)-Messungen (Vakuum Thermoanalyser TA 1 der Firma Mettler Instrumente AG.) im Temperaturbereich von 20–250 °C ergänzt. Alle tensimetrisch ermittelten Zersetzungsstufen von Ni(NH₂)₂ und Na₂Ni(NH₂)₄ konnten auch anhand der DTG-Messungen erfasst werden. Lediglich die Zersetzungstemperaturen liegen aufgrund unterschiedlicher Aufheizraten (2 K min⁻¹ gegenüber 10 K pro Tag im Tensieudiometer) um *ca.* 20 K höher.

An der Li-, K-, Rb- und Cs-Verbindung wurde daher mit DTA/TG-Messungen unter Argon-Atmosphäre mit Aufheizraten von $2 \text{ K} \text{min}^{-1}$ im Temperaturbereich $20-300 \text{ }^{\circ}\text{C}$ begonnen. Tabelle 8 gibt die Ergebnisse dieser und entsprechender Messungen an Ni(NH₂)₂ und Na₂Ni(NH₂)₄ wieder.

Bei allen Verbindungen findet man schon lange vor dem ersten thermischen Ereignis eine schwache bis mässig starke kontinuierliche Zersetzung. Dies spiegelt sich im Verhalten der Substanzen bei der Aufbewahrung im geschlossenen Glasrohr wider. Auch hier tritt langsame Zersetzung unter Farbveränderung ein.

Am Beginn des steilen Abfallens der TG-Kurven wurde die eigentliche Zersetzungstemperatur ermittelt. Danach folgt jeweils ein kleiner Temperaturbereich, in dem der Zerfall von Ni_3N_2 zu $Ni_3N + \frac{1}{2}N_2$ stattfindet. Am Ende dieses Bereiches bei *ca*. 170 °C wurde jeweils der Masseverlust von mindestens zwei bis dahin abgelaufenen Zersetzungsreaktionen bestimmt.

Die Masseverluste Δm lassen auf folgende Bruttoreaktionen schliessen, die wie Tabelle 8 zeigt, in guter Übereinstimmung die gemessenen Δm -Werte erklären:

$$\begin{split} \text{Ni}(\text{NH}_{2})_{2} &\longrightarrow \frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{1}{6}\text{N}_{2} \\ \text{Li}_{3}\text{Ni}_{4}(\text{NH}_{2})_{11} \cdot \text{NH}_{3} &\longrightarrow 3\text{Li}\text{NH}_{2} + 4(\frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{1}{6}\text{N}_{2}) + \text{NH}_{3} \\ \text{Na}_{2}\text{Ni}(\text{NH}_{2})_{4} &\longrightarrow 2\text{Na}\text{NH}_{2} + \frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{1}{6}\text{N}_{2} \\ \text{K}_{2}\text{Ni}(\text{NH}_{2})_{4} \cdot 0,23\text{K}\text{NH}_{2} &\longrightarrow 2,23\text{K}\text{NH}_{2} + \frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{4}{6}\text{N}_{2} \\ \text{Rb}_{2}\text{Ni}(\text{NH}_{2})_{4} \cdot 0,33\text{Rb}\text{NH}_{2} &\longrightarrow 2,33\text{Rb}\text{NH}_{2} + \frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{1}{6}\text{N}_{2} \\ \text{Cs}_{2}\text{Ni}(\text{NH}_{2})_{4} \cdot \text{NH}_{3} &\longrightarrow 2\text{Cs}\text{NH}_{2} + (\frac{1}{3}\text{Ni}_{3}\text{N} + \frac{4}{3}\text{NH}_{3} + \frac{1}{6}\text{N}_{2}) + \text{NH}_{3} \end{split}$$

Ausgehend von den DTA/TG-Messungen wurden die Amide bzw. Amid-Ammoniakate nun im Tensieudiometer bei $p(NH_3)=0-1$ bar und *ca*. 20 K unterhalb der ermittelten Zersetzungstemperaturen thermisch abgebaut. Die entstandenen festen Reaktionsprodukte wurden röntgenographisch als Pulver von Ni₃N₂ bzw. Ni₃N [3] identifiziert, während die entsprechenden Alkalimetallamide so nicht nachweisbar sind.

Offenbar lassen sich aus ternären Alkalimetallnickelamiden unter den gewählten Bedingungen keine Alkalimetallnickelnitride darstellen. Die von Sachsse und Juza [21] charakterisierte Phase $\text{Li}_{3-x}\text{Ni}_x\text{N}$ mit $0 \le x \le 0,63$ entsteht erst bei erheblich höheren Temperaturen von 560 °C aus Li₃N-, Ni-Pulver und N₂.

5. IR-spektroskopische Untersuchungen an $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ und $Cs_2Ni(NH_2)_4 \cdot NH_3$

Beide Titelverbindungen wurden schwingungsspektroskopisch mit der Fourier-Transform-Infrarot (FTIR)-Methode (Fa. Bruker, FTIR-Spektrometer 113v) untersucht. Es wurden KBr-Presslinge nach der Sandwich-Technik [22] angefertigt. Dabei dürfen die Amide nicht im Mörser verrieben werden, da sie sich sonst zersetzen (s.o.). Die Raman-Methode kann nicht angewendet werden. Beide Verbindungen werden im Raman-Laserlicht aufgrund ihrer Eigenfarbe zerstört. Dies wurde schon mehrfach bei anderen Nickelamiden [1, 3, 4] beobachtet.

Abbildung 1 zeigt Spektren und Tabelle 9 die Zuordnung der Banden analog zu Ni(NH₂)₂ [3] und M₂Ni(NH₂)₄·yMX·zMNH₂ mit M=K, Rb, Cs [1].

Eine Unterscheidung der Wellenzahlen von Valenz- und Deformationsschwingungen für NH_2^- und NH_3 ist nicht möglich. Trotzdem soll mit Tabelle 10 der Einfluss des Alkalimetallkations auf die Kraftkonstante der N–H- (im

Abb. 1. FTIR-Spektren von $Li_3Ni_4(NH_2)_{11}\cdot NH_3$ und $Cs_2Ni(NH_2)_4\cdot NH_3.$

Zuordnung	Li ₃ Ni ₄ (NH ₂) ₁₁ ·NH ₃ Wellenzahl (cm ⁻¹) (Intensität)	Cs₂Ni(NH₂)₄·NH₃ Wellenzahl (cm ^{−1}) (Intensität)
ν (NH ₂ ⁻ bzw. NH ₃)	3340 (sh) 3328(sh) 3314(s) 3296(m) 3282(m) 3257(s) 3235(s)	3286 (m) 3259 (s) 3204 (s) 3149(m)
$\nu(N_3^-)$	2074 (s)	2053 (w)
$\delta(\mathrm{NH_2}^- \mathrm{bzw. NH_3})$	1502 (s)	≈1520 (w)
$\omega(\mathrm{NH_2}^- \text{ bzw. NH}_3)$	<pre>{ 853 (vs) 803 (s)</pre>	759 (m)
$\rho(\mathrm{NH}_2^- \mathrm{bzw. NH}_3)$	<pre>{ 710 (vs) 652 (s)</pre>	678 (s) 614 (m)
ν(Ni–N)	532 (vs)	493 (vs)

Auswertung von FTIR-Spektren von Li₃Ni₄(NH₂)₁₁·NH₃ und Cs₂Ni(NH₂)₄·NH₃

TABELLE 10

Valenzschwingungszahlen der Amidionen (bzw. Ammoniakmoleküle) und Ni–N-Bindungen in $Ni(NH_2)_2$ und einigen Alkalimetallnickelamiden in cm⁻¹

	$\nu(\mathrm{NH_2}^-)$ bzw. $\nu(\mathrm{NH_3})$	ν(Ni–N)
Ni(NH ₂) ₂	3317, 3328	563, 534, 501
$Li_3Ni_4(NH_2)_{11} \cdot NH_3$	3340, 3328, 3314, 3296	532
	3282, 3257, 3235	
$Na_2Ni(NH_2)_4$	3300, 3278, 3257, 3212	517
$K_2Ni(NH_2)_4 \cdot yKCN \cdot zKNH_2$	3260, 3200, 3170	500
$Rb_2Ni(NH_2)_4 \cdot yRbCN \cdot zRbNH_2$	3265, 3210, 3170	495
$Cs_2Ni(NH_2)_4 \cdot yCsCN \cdot zCsNH_2$	3285, 3265, 3210	485
$Cs_2Ni(NH_2)_4 \cdot NH_3$	3286, 3259, 3204, 3149	493

Amidion) und der Ni-N-Bindung in der Reihe der Alkalimetallnickelamide diskutiert werden.

Betrachtet man in einer groben Näherung die Mittelwerte der Valenzschwingungszahlen vom Amidion (bzw. von NH₃), so ergibt sich in der Reihe Li- bis K-Nickelamid ein deutliches Abfallen der Werte. Die Amidoniccolate(II) der höheren Alkalimetalle zeigen sehr ähnliche Werte für ν (NH₂⁻) bzw. ν (NH₃). Ein polarisierender Einfluss des Alkalimetallkations auf die N-H-Bindung und eine dadurch bedingte Bindungsverstärkung wird nur bei den "härteren" Kationen Li⁺, Na⁺ und K⁺ in Abhängigkeit von ihrer Ladungsdichte

TABELLE 9

wirksam. Die "weicheren" Kationen Rb^+ und Cs^+ verhalten sich diesbezüglich indifferent.

Bei der Ni–N-Valenzschwingung korreliert die deutliche Abnahme der Wellenzahlen von der Li- zur K-Verbindung ebenfalls mit einer abnehmenden Ladungsdichte am Alkalimetallkation. Ein polarisierender Einfluss ist bei den K-, Rb- und Cs-Verbindungen kaum noch wahrzunehmen.

6. Strukturbeschreibung und Diskussion von Li₃Ni₄(NH₂)₁₁·NH₃

In Analogie zu Na₂Ni(NH₂)₄ \cdot 2NH₃ [4] werden alle Stickstoffatome, welche nur von Alkalimetallkationen koordiniert sind, NH₃-Molekülen und alle anderen N-Atome Amid-Ionen zugeordnet.

Vier verschiedene Nickelkationen Ni(1) bis Ni(4) werden jeweils beinahe ideal quadratisch planar von vier Amidionen umgeben. Jeweils zwei Komplexionen – Ni(2) und Ni(3) – ordnen sich parallel (011) an und bilden so Grund- und Deckfläche eines tetragonalen Prismas. Dies geht aus Abb. 2 hervor.

Abb. 2. $Li_3Ni_4(NH_2)_9(NH_2)_{4/2} \cdot NH_3$ -Baueinheit in der Struktur von $Li_3Ni_4(NH_2)_{11} \cdot NH_3$: (oben) mit Kennzeichnung der Atome nach Tabelle 4; (unten) mit Schwingungsellipsoiden der thermischen Schwingung (40% Aufenthaltswahrscheinlichkeit).

Die Verknüpfung dieser beiden übereinanderliegenden $[Ni(NH_2)_4]^{2^-}$ -Einheiten erfolgt teilweise – analog zur Struktur von $Ni(NH_2)_2$ [3] – über gegenüberliegende Spitzen weiterer $[Ni(NH_2)_4]^{2^-}$ -Ionen von Ni(1) und Ni(4). Teilweise erfolgt sie, analog zur Struktur von $Na_2Ni(NH_2)_4 \cdot 2NH_3$ [4], durch ein Alakalimetallkation (Li(3)), welches sich über der Mitte einer Prismenrechteckfläche befindet. Weiterhin werden die parallel angeordneten $[Ni(NH_2)_4]^{2^-}$ -Ionen durch zwei tetraedrische $[Li(NH_2)_4]^{3^-}$ -Einheiten (Li(1) und Li(2)) spitzenverknüpft. Die resultierende Baueinheit Li₃Ni₄(NH₂)₉·(NH₂)_{4/2}·NH₃ ist in Abb. 2 dargestellt. Die Koordinationsphäre von Li(3) wird durch NH₃ (N(12)), welches sich in grösserer Entfernung ebenfalls über der Mitte der Prismenrechteckfläche befindet, zu einer rechteckigen Pyramide ergänzt. Die Koordinationspolyeder um die Lithiumkationen sind in Abb. 3 dargestellt.

Innerhalb der Baueinheit Li₃Ni₄(NH₂)₉(NH₂)_{4/2}·NH₃, die das Fragment $[Ni_4(NH_2)_{11}]^{3-}$ aus der Ni(NH₂)₂-Struktur enthält, lassen kurze Abstände $d(Ni^{2+}-Ni^{2+})=2,860(4)-3,080(4)$ Å als auch $d(Ni^{2+}-Li^+)=2,69(5)-3,33(4)$ Å und $d(Li^+-Li^+)=2,52(7)-2,53(7)$ Å und deformierte pentagonale Bipyramide – Li₃Ni₄ – erkennen. Formal werden 2 Nickeln-kationen des Ni-Oktaeders in Ni(NH₂)₂ [3] durch 3 Lithiumkationen substituiert, so dass kein Oktaeder aus Metallkationen wie – Na₄Ni₂ bzw. Cs₄Ni₂ – in Na₂Ni(NH₂)₄·2NH₃ [4] bzw. Cs₂Ni(NH₂)₄·NH₃ (s.u.) auftritt.

Das Kuboktaeder aus 12 N(NH₂⁻) im Ni(NH₂)₂, welches den Ni-Oktaeder umgibt, findet sein Analogon im deformierten Kuboktaeder aus 11 N(NH₂⁻) und 1 N(NH₃) in Li₃Ni₄(NH₂)₁₁·NH₃; vgl. Abb. 4.

Abb. 3. Tetraedrische bzw. pyramidale Umgebung von Lithium durch Stickstoff in $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ (Kennzeichnung der Atome nach Tabelle 4).

Koordinationsverhältnisse, Abstände in Å und Winkel in Grad innerhalb eines $^1_{\infty}$ [Li₃Ni₄- (NH₂)₉(NH₂)_{4/2}·NH₃]-Stranges

Ni(1)–Ni(2) Ni(1)–Ni(3) Ni(1)–Ni(4) Ni(1)–Li(1)	2,860(4) 2,922(4) 3,080(4) 2,82(4)	Ni(1)–N(7) Ni(1)–N(2) Ni(1)–N(4) Ni(1)–N(1)	1,89(2) 1,94(2) 1,97(2) 1,99(2)	<pre>\$ N(7)-Ni(1)-N(2) \$ N(7)-Ni(1)-N(4) \$ N(2)-Ni(1)-N(1) \$ N(4)-Ni(1)-N(1) \$ N(4)-Ni(1)-N(1) \$ N(7)-Ni(1)-N(1) \$ N(2)-Ni(1)-N(4)</pre>	89(1) 90(1) 92(1) 92(1) 169(1) 163(1)
Ni(2)–Ni(4) Ni(2)–Ni(3) Ni(2)–Li(3) Ni(2)–Li(1) Ni(2)–Li(2)	2,896(5) 3,763(5) 2,69(5) 3,23(5) 3,33(4)	Ni(2)–N(9) Ni(2)–N(2) Ni(2)–N(10) Ni(2)–N(3)	1,89(2) 1,91(2) 1,92(2) 1,93(2)	<pre></pre>	91(1) 90(1) 90(1) 89(1) 179(1) 175(1)
Ni(3)–Ni(4) Ni(3)–Li(3) Ni(3)–Li(2) Ni(3)–Li(1)	2,882(5) 2,71(5) 3,21(4) 3,21(5)	Ni(3)–N(8) Ni(3)–N(6) Ni(3)–N(4) Ni(3)–N(11)	1,87(2) 1,90(2) 1,93(2) 1,94(2)	<pre>* N(8)-Ni(3)-N(6) * N(8)-Ni(3)-N(11) * N(6)-Ni(3)-N(4) * N(4)-Ni(3)-N(11) * N(8)-Ni(3)-N(4) * N(6)-Ni(3)-N(11)</pre>	92(1) 87(1) 91(1) 89(1) 177(1) 176(1)
Ni(4)-Li(2)	2,83(4)	Ni(4)–N(5) Ni(4)–N(7) Ni(4)–N(6) Ni(4)–N(9)	1,92(2) 1,93(2) 1,95(2) 1,99(2)	<pre>\$ N(5)-Ni(4)-N(6) \$ N(5)-Ni(4)-N(9) \$ N(7)-Ni(4)-N(6) \$ N(7)-Ni(4)-N(9) \$ N(5)-Ni(4)-N(7) \$ N(6)-Ni(4)-N(9)</pre>	94(1) 89(1) 90(1) 89(1) 170(1) 162(1)
Li(1)-Li(3) Li(1)-Li(2) Li(1)-Li(11) Li(1)-N(1) Li(1)-N(10) Li(1)-N(5)	2,52(7) 2,61(6) 1,96(5) 2,06(5) 2,09(5) 2,31(5)	<pre>≮ N(11)-Li(1)-N(1) ≮ N(11)-Li(1)-N(10) ≮ N(11)-Li(1)-N(5) ≮ N(1)-Li(1)-N(10) ≮ N(1)-Li(1)-N(5) ≮ N(10)-Li(1)-N(5)</pre>	113(2) 119(2) 107(2) 106(2) 103(2) 108(2)	Li(3)–N(12) Li(3)–N(3) Li(3)–N(11) Li(3)–N(8) Li(3)–N(10)	2,05(5) 2,16(5) 2,25(5) 2,29(5) 2,34(5)
Li(2)-Li(3) Li(2)-N(5) Li(2)-N(8) Li(2)-N(3) Li(2)-N(1)	2,53(7) 2,00(5) 2,07(5) 2,08(5) 2,23(5)		113(2) 106(2) 108(2) 113(2) 104(2) 113(2)		
N(1)–N(2) N(1)–N(4) N(1)–N(10) N(1)–N(11)	2,83(3) 2,84(3) 3,31(3) 3,35(3)	N(3)–N(10) N(3)–N(9) N(3)–N(5) N(3)–N(12)	2,69(3) 2,70(3) 3,26(3) 3,30(3)	N(6)-N(8) N(6)-N(7) N(7)-N(9)	2,72(3) 2,74(3) 2,77(3)
N(1)–N(8) N(1)–N(5) N(1)–N(3) N(2)–N(7)	3,39(3) 3,42(3) 3,59(3) 2,70(3)	N(3)-N(8) N(4)-N(11) N(4)-N(6) N(4)-N(7)	2,72(3) 2,73(3) 2,73(3)	N(8)–N(11) N(8)–N(12) N(10)–N(12)	2,63(3) 3,49(4) 3,42(4)
N(2)–N(9) N(2)–N(10)	2,71(3) 2,71(3)	N(5)–N(9) N(5)–N(6) N(5)–N(8) N(5)–N(11) N(5)–N(10)	2,75(3) 2,83(3) 3,39(3) 3,44(3) 3,56(3)	N(10)–N(11) N(11)–N(12)	3,48(3) 3,44(4)

Tabelle 11 enthält eine Zusammenfassung der Koordinationsverhältnisse und Abstände innerhalb einer Baueinheit $\text{Li}_3\text{Ni}_4(\text{NH}_2)_9(\text{NH}_2)_{4/2} \cdot \text{NH}_3$.

Die Verknüpfung dieser Baueinheiten geschieht längs [011] über gemeinsame Kanten der $[Li(NH_2)_4]^{3-}$ -Tetraeder von Li(1) und Li(2), was durch die Schreibweise Li₃Ni₄(NH₂)₉(NH₂)_{4/2} · NH₃ angedeutet wird. Die gemeinsame Kante wird durch Amidionen von N(1) und N(5) gebildet. Die Richtung [011], in der die Stränge $\frac{1}{2}$ [Li₃Ni₄(NH₂)₉(NH₂)_{4/2}·NH₃] verlaufen und die innerhalb des Stranges alternierende Ausrichtung der $NH_3(N(12))$ – relativ zu Li(2) - nach [100] und [100] entsprechen der *n*-Gleitspiegelebene parallel (100). *a*-Gleitspiegelebene parallel (010) entsprechend verlaufen Der die ${}_{\infty}^{1}$ [Li₃Ni₄(NH₂)₉(NH₂)_{4/2}·NH₃]-Stränge – in Blickrichtung [100] alternierend - längs [011] und [011]. Dies wird anhand Abb. 5 deutlich. Man beachte, dass die im linken Teil von Abb. 5 dargestellten Baueinheiten nicht demselben Strang angehören.

Zur Diskussion von bindenden Wechselwirkungen zwischen den Strängen können kurze N–N-Abstände zwischen Amidionen bzw. Ammoniakmolekülen herangezogen werden, obwohl die H-Lagen nicht bestimmt werden konnten. Tabelle 12 enthält Abstände d(N–N) kleiner 4 Å, die auf N–H····N-Brückenbindungen zwischen den Strängen hinweisen.

In Abb. 5 sind solche Abstände gestrichelt eingezeichnet. Kurze Abstände d(N-N) zwischen unterschiedlichen Strängen senkrecht (100) treten zwischen N(4) und N(12) mit 3,56(4) Å und zwischen N(7) und N(9) mit 3,79(3) Å auf.

Abb. 5. Anordnung der $\frac{1}{\infty}$ [Li₃Ni₄(NH₂)₉(NH₂)_{4/2}·NH₃]-Stränge in der Elementarzelle von Li₃Ni₄(NH₂)₁₁·NH₃.

N(2)-N(6)	3,41(3)	N(7)–N(9)	3,79(3)
N(3)-N(11)	3,51(3)	N(8) - N(1)	3,67(3)
N(3) - N(4)	3,52(3)	N(9) - N(11)	3,79(3)
N(4)-N(12)	3,56(4)		, , , , , , , , , , , , , , , , , , , ,

Koordinationsverhältnisse und Abstände in Å zwischen den ${}^{1}_{\infty}$ [Li₃Ni₄(NH₂)₉(NH₂)_{4/2}·NH₃]-Strängen

Innerhalb der Ebene (100) findet man drei kurze Abstände d(N-N) längs [011] mit 3,51(3) Å, 3,53(3) Å und 3,79(3) Å und zwei weitere längs [001] mit 3,41(3) Å und 3,67(3) Å. Eine Analyse der Temperaturabhängigkeit der Lagen und Halbwertsbreiten entsprechender Schwingungsbanden konnte mit der Ramanmethode nicht durchgeführt werden, so dass ein experimenteller Nachweis von H-Brückenbindungen entfällt. Es sind jedoch nur schwache Brückenbindungen zu erwarten, da alle Abstände mit $d(N-N) \ge 3,41$ Å z.B. über denjenigen in festem NH₃ bei -196 °C mit $d(N-N) \ge 3,35$ Å liegen [23].

7. Strukturbeschreibung und Diskussion von $Cs_2Ni(NH_2)_4 \cdot NH_3$

Die Zuordnung der Stickstoffatome zu NH_2^- bzw. NH_3 erfolgt wie bei $Li_3Ni_4(NH_2)_{11} \cdot NH_3$ beschrieben. Nickel wird wiederum nahezu quadratisch planar von vier Amidionen umgeben. Zwei $[Ni(NH_2)_4]^2$ -Ionen ordnen sich wie im Fall von $Na_2Ni(NH_2)_4 \cdot 2NH_3$ [4] und $M_2Ni(NH_2)_4 \cdot yMX \cdot zMNH_2$ (M = K, Rb, Cs) [1] jeweils parallel übereinander an. Wie bei allen Na-, K-, Rb- und Cs-Verbindungen bietet sich zur Beschreibung das Modell eines tetragonalen Prismas an, dessen Grund- und Deckfläche von $[Ni(NH_2)_4]^2$ -Ionen gebildet werden. Diese beiden Ionen werden auch hier von vier Alkalimetallkationen verknüpft, die sich über den Mitten der Prismen-Rechteckflächen befinden. Sowohl Cs(1) als auch Cs(2) zeigen innerhalb ihrer ersten Stickstoff-Koordinationssphäre die vier kürzesten Cs–N-Abstände zu Amidionen desselben $[Ni_2(NH_2)_8]^4$ -Prismas. Dies wird in den Abb. 6 und 7 dargestellt.

Während in Ni(NH₂)₂ [3] und Li₃Ni₄(NH₂)₁₁·NH₃ noch ungewöhnlich kurze Abstände d(Ni–Ni) vorliegen, sind diese in Cs₂Ni(NH₂)₄·NH₃ mit d(Ni–Ni) \geq 5,048 Å gross. In Tabelle 13 sind Koordinationsverhältnisse und Abstände für Cs₂Ni(NH₂)₄·NH₃ zusammengefasst.

Die Stickstoffatome der NH₃-Moleküle befinden sich näherungsweise über den Mitten der vier langen Kanten des tetragonalen Prismas und koordinieren so zwei Cs⁺-Ionen der einen und zwei weitere Cs⁺ einer anderen Cs₄Ni₂(NH₂)₈·4/2NH₃-Baueinheit. Wie nach der höheren Koordinationszahl (KZ) des NH₃ von KZ = 4 gegenüber KZ = 1 in den Amid–Ammoniakaten von Lithium und Natrium zu erwarten, ist der kürzeste Abstand in diesem Fall nicht derjenige zum NH₃ sondern zum NH₂⁻.

Abb. 6. $Cs_4Ni_2(NH_2)_8 \cdot 4/2NH_3$ -Baueinheit in $Cs_2Ni(NH_2)_4 \cdot NH_3$: (oben) mit Kennzeichnung der Atome nach Tabelle 4; (unten) mit Ellipsoiden der thermischen Schwingung (40% Aufenthaltswahrscheinlichkeit).

Abb. 7. Umgebung von Caesium durch Stickstoff in $Cs_2Ni(NH_2)_4 \cdot NH_3$ (Kennzeichnung der Atome nach Tabelle 4).

Die Koordinationssphären der Caesiumatome sind in Abb. 7 wiedergegeben. Die Koordinationszahlen sind KZ(Cs(1)) = 8 und KZ(Cs(2)) = 9. Neben wenig strukturierten Cs–N-Abständen findet man Cs-umgebende N-Polyeder, die näherungsweise als stark deformierte zweifach (Cs(1)-Umgebung) bzw.

Cs(1)Cs(2)	3,943((1) $Cs(2)$ -	-Cs(1) 3	3,943(1)	Ni-Ni	5,048(2)
Cs(1)-Cs(2)	4,095((1) $Cs(2)$ -	-Cs(1) 4	4,095(1)	Ni–2Ni	5,562(2)
Cs(1)-Cs(2)	4,468((1) $Cs(2)$ -	-Cs(1) 4	1,468(1)	Ni-Ni	≥7,066
Cs(1)-2Cs(1) 4,571((1) $Cs(2)$ -	-Cs(2)	5,512(1)		
Cs(1)-Cs(2)	5,576((1) $Cs(2)$ -	-Cs(2)	5,523(1)	≮ Cs(1)–Ni–Cs(1) 98,3
Cs(1)–Cs	≥5,842	Cs(2)-	-Cs(1) 5	5,576((1)	≮ Cs(1)–Ni–Cs(2) 62,3-65,5
-		Cs(2)-	-Cs ≥t	5,966	≮ Cs(2)–Ni–Cs(2) 95,1–105,3
Cs(1)–Ni	3,836((2) Cs(2)-	-Ni a	3,730(2)		
Cs(1)-Ni	3,885((1) $Cs(2)$ -	-Ni a	3,752(1)	Ni-N(1)	1,926(9)
Cs(1)–Ni	≥5,326	Cs(2)-	-Ni a	3,773(1)	Ni-N(2)	1,934(10)
		Cs(2)-	-Ni ≥€	5,107	Ni-N(3)	1,937(9)
					NiN(4)	1,941(8)
Cs(1)N(3)	3,181((5) Cs(2)-	-N(3) 3	3,098(11)	Ni–N(5)	4,31(1)
Cs(1)-N(2)	3,217((8) Cs(2)-	-N(2) 3	3,146(9)	Ni–N	≥4,53
Cs(1)-N(4)	3,236((9) Cs(2)-	-N(1) 3	3,161(5)		
Cs(1)N(1)	3,239((11) Cs(2)-	-N(4) 3	3,204(9)	≮ N(1)–Ni–N(2)	91,41(4)
Cs(1)N(5)	3,310((12) Cs(2)-	-N(3) 3	3,550(8)	≮ N(1)–Ni–N(4)	90,24(3)
Cs(1)-N(1)	3,401((9) Cs(2)-	-N(5) 8	3,613(11)	≮ N(3)NiN(2)	90,40(4)
Cs(1)N(5)	3,405((12) Cs(2)-	-N(5) 3	8,758(8)	≮ N(3)–Ni–N(4)	87,76(4)
Cs(1) - N(4)	3,818((8) Cs(2)-	-N(2) 3	3,907(9)	≮ N(1)–Ni–N(3)	176,69(2)
Cs(1)-N	≥4,747	Cs(2)-	-N(4) 3	3,936(12)	≮ N(2)–Ni–N(4)	175,85(4)
		Cs(2)-	-N ≥4	,621		
N(1) - N(4)	2.74(1)	N(2) - N(3)	2.75(1)	N(3)-N	(4) 2.69(1)	N(4)N≥3.87
N(1) - N(2)	2.76(1)	N(2) - N(5)	3.50(2)	N(3) - N	(5) $3.30(1)$	
N(1)-N	≥3.85	N(2) - N(5)	3.67(1)	N(3)N	(5) 3.68(1)	
	-,-0	N(2)-N	≥3,87	N(3)-N	≥3,85	

Koordinationsverhältnisse, Abstände in Å und Winkel in Grad für $Cs_2Ni(NH_2)_4 \cdot NH_3$; (N(1), N(2), N(3), N(4) \triangleq NH₂⁻ und N(5) \triangleq NH₃)

dreifach (Cs(2)-Umgebung) überdachte trigonale Prismen bezeichnet werden können.

Die Koordinationszahl für Caesium bezüglich Amid (bzw. Ammoniak) variiert mit KZ = 6 in $Cs_2Ni(NH_2)_4 \cdot yCsCN \cdot zCsNH_2$ [1] bis KZ = 12 in $CsCa(NH_2)_3$ bzw. $CsEu(NH_2)_3$ [24] erheblich, was mit der geringen Ladungsdichte von Cs^+ zu erklären ist [25].

Trotz der relativ grossen Cs–Cs- und Cs–Ni-Abstände ist auch im Falle des Cs₂Ni(NH₂)₄·NH₃ die formale Beschreibung eines M-Oktaeders (M = Ni bzw. Alkalimetall), der von einem N-Polyeder umgeben ist, sinnvoll. "Cs₄Ni₂-Oktaeder" sind von N-Polyedern aus 8 NH₂⁻-Ionen und 4/2 NH₃-Molekülen in Form eines tetragonalen Oktaederstumpfes umgeben. Beide Polyeder sind in Abb. 4 stilisiert dargestellt. Die Verwandtschaft zu den mehr oder weniger verzerrten N-Kuboktaedern der übrigen Nickelamide wird ersichtlich.

Die dreidimensionale Verknüpfung der Baueinheiten $Cs_4Ni_2(NH_2)_8 \cdot 4/2$ -NH₃ erfolgt über Caesiumkationen und NH₃-Moleküle. Durch die hohen Koordinationszahlen und die unregelmässige Koordination um Cs⁺ erscheint das Verknüpfungsprinzip recht komplex. Zur vereinfachenden Beschreibung soll Abb. 8 dienen, in der alle von einer $[Cs_4Ni_2(NH_2)_8 \cdot 4/2NH_3]$ -Einheit ausgehenden Bindungen zu nächsten Cs^+ -Nachbarn eingezeichnet sind.

 Cs^+ -Ionen stellen den Kontakt mit den nächsten $[Ni_2(NH_2)_8]^{4-}$ -Nachbarn her. Von diesen ist zur Vereinfachung nur jeweils eine Rechteckfläche des tetragonalen Prismas dargestellt.

Sowohl Cs(1) als auch Cs(2) verknüpfen Amidionen von drei verschiedenen Einheiten Cs₄Ni₂(NH₂)₈·4/2NH₃, während N(5) – bzw. NH₃ – vier Cs⁺ von zwei verschiedenen Einheiten koordiniert.

In Abb. 9 wird die Anordnung der Baueinheiten $Cs_4Ni_2(NH_2)_8 \cdot 4/2NH_3$ zueinander auf eine pseudo-kubisch innenzentrierte Packung zurückgeführt.

Es sind tetragonale Prismen aus NH_2^- -Ionen mit Nickel im Zentrum von Grund- und Deckfläche und Caesium über den Zentren der Prismenrechteckflächen dargestellt. Die Metrik der gestrichelt eingezeichneten pseudo-kubischen (pk) Zelle zur monoklinen (m) ergibt sich wie folgt:

$$\vec{a}_{\rm pk} = \vec{a}_{\rm m}$$
 $\vec{b}_{\rm pk} = \vec{b}_{\rm m}$ und $\vec{c}_{\rm pk} = \vec{a}_{\rm m} - \vec{c}_{\rm m}$

Die Gitterkonstanten dieser volumengleichen Zelle sind a=9,553 Å; b=8,734 Å; c=10,925 Å und $\beta=92,13^{\circ}$. Aufgrund der Achsverhältnisse in der pseudo-kubischen Zelle von 1,09:1:1,25 findet man – bezogen auf die

Abb. 8. Verknüpfung der $Cs_4Ni_2(NH_2)_8 \cdot 4/2NH_3$ -Baueinheiten in der Struktur von $Cs_2Ni(NH_2)_4 \cdot NH_3$.

Abb. 9. Stilisierte Darstellung einer pseudo-kubisch innenzentrierten Anordnung von $Cs_4Ni_2(NH_2)_8 \cdot 4/2NH_3$ -Einheiten.

Packung der Baueinheiten – nicht die Koordinationszahl 8(+6) wie im Idealfall der kubisch innenzentrierten Kugelpackung, sondern die Koordinationszahl 10(+4) (vgl. Abb. 8). Grund- und Deckfläche der Prismen sind annähernd parallel zur Raumdiagonalen der pseudo-kubischen Zelle orientiert.

Hinweise auf H-Brückenbindungen geben "kurze" Abstände d(N-N)zwischen Amidionen und Ammoniakmolekülen mit $d(N-H\cdots N) = 3,30(1)$ Å, 3,50(1) Å, 3,67(1) Å, 3,68(1) Å und $\geq 3,85$ Å. Ohne die Bestimmung aller H-Positionen oder nähere schwingungsspektroskopische Untersuchungen sind jedoch keine genaueren Aussagen zu H-Brückenbindungen möglich.

8. Schlussbemerkung

In der Reihe strukturell untersuchter Nickelamide Ni(NH₂)₂ [3], Li₃Ni₄(NH₂)₁₁·NH₃, Na₂Ni(NH₂)₄·2NH₃ [4] und CsNi(NH₂)₄·NH₃ findet man einheitlich die Ausbildung von N₁₂-Polyedern um M-Polyeder mit M = Ni und Alkalimetall. Dabei nimmt der Grad der Verzerrung des N-Kuboktaeders von Ni(NH₂)₂ über die Li- zur Na-Verbindung hin zu, was in der Cs-Verbindung schliesslich zu tetragonalen Oktaederstümpfen aus Stickstoffatomen führt; (vgl. Abb. 4). Die N-Polyeder stellen somit Kompromisse dar, in denen die strukturbestimmenden quadratisch planaren [Ni(NH₂)₄]²⁻-Ionen über dicht gepackte $\rm NH_2^-$ -Ionen bzw. $\rm NH_3$ -Moleküle verknüpft werden. Der Einfluss zunehmender Ionenradien und Koordinationszahlen der Alkalimetallionen geht einher mit dem Grad der Abweichung vom Idealfall eines Kuboktaeders, der bekanntlich einen Ausschnitt aus der kubisch dichten Kugelpackung darstellt.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit mit Sachbeihilfen.

Literatur

- 1 J. Bock und H. Jacobs, J. Less-Common Met., 137 (1988) 105.
- 2 J. Bock, Dissertation, Universität Dortmund, 1986.
- 3 A. Tenten und H. Jacobs, J. Less-Common Met., 170 (1991) 185.
- 4 A. Tenten und H. Jacobs, Z. Anorg. Allg. Chem., im Druck.
- 5 B. Harbrecht, Dissertation, Universität Aachen, 1982.
- 6 H. Jacobs und B. Harbrecht, J. Less-Common Met., 85 (1982) 86.
- 7 H. Jacobs und B. Harbrecht, Z. Anorg. Allg. Chem., 518 (1984) 87.
- 8 B. Harbrecht und H. Jacobs, unveröffentlichte Ergebnisse, private Mitteilung, 1990.
- 9 B. Harbrecht und H. Jacobs, Z. Anorg. Allg. Chem., 546 (1987) 48.
- 10 H. Jacobs, A. Schardey und B. Harbrecht, Z. Anorg. Allg. Chem., 555 (1987) 43.
- 11 F. O. Schröder und H. Jacobs, unveröffentlichte Ergebnisse, private Mitteilung, 1991.
- 12 H. Jacobs, K. Jänichen, C. Hadenfeldt und R. Juza, Z. Anorg. Allg. Chem., 531 (1985) 125.
- 13 J. Bock und H. Jacobs, unveröffentlichte Ergebnisse, private Mitteilung, 1989.
- 14 H. Jacobs und D. Schmidt, Curr. Top. Mater. Sci., 8 (1982) 379-425.
- 15 R. Hara, Jpn. Sci. Rev., Ser. 1, 1 (1949) 32.
- 16 G. Heymer und A. Schneider, Z. Anorg. Allg. Chem., 302 (1959) 306.
- 17 W. Biltz, Raumchemie Fester Stoffe, Verlag Leopold Voss, Leipzig, 1934.
- 18 M. G. Sheldrick, SHELXTL-PLUS (release 3.43) for Nicolet R3m/V Crystallographic Research Systems. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Siemens Analytical X-ray Instruments, Inc., 1988.
- 19 B. A. Frenz, in H. Schenk, R. Althof-Hazekamp, H. van Koningsveld und G. C. Bassi (eds.), Computing in Crystallography, Delft University Press, Delft, 1978, p. 64.
- 20 Firma E. Merck, Darmstadt, Komplexometrische Bestimmungen mit Titriplex (ohne Jahresangabe und Verlag).
- 21 W. Sachsse und R. Juza, Z. Anorg. Allg. Chem., 259 (1949) 278.
- 22 G. Linde und R. Juza, Z. Anorg. Allg. Chem., 409 (1974) 199.
- 23 J. W. Reed und P. M. Harris, J. Chem. Phys., 35 (1961) 1730.
- 24 H. Jacobs und J. Kockelkorn, J. Less-Common Met., 81 (1981) 143.
- 25 M. Nagib, E. von Osten und H. Jacobs, Atomkernenergie, 43 (1983) 47.
- 26 R. D. Shannon, Acta Crystallogr. Sect. A, 32 (1976) 751.